

Theory: A. Cottet

Quantum dot circuits in microwave cavities

M. R. Delbecq

Laboratoire Pierre Aigrain, Ecole Normale Supérieure, Paris France

Experiment: **T. Kontos**, L. E. Bruhat, J. J. Viennot, S. Datta.

Acknowledgements: P. Simon, J.M. Raimond, M. Devoret, A. Clerk, P. Samuelsson, M. Büttiker, R. Deblock, H. Bouchiat, G. Zarand.

Cavity QED Circuit QED

M. Brune et al., PRL 76, 1800 (1996)

A. Wallraff et al., Nature 431, 162 (2004)

Real or artificial two-level systems shift the resonance frequency of high finesse cavities

Quantum Dot

D. Goldhaber-Gordon et al., Nature 391, 156 (1998)

Various transport regimes with strong electronic interactions

Circuit QED with quantum dots

Hybrid circuit QED

M.R. Delbecq et al. PRL '11. See also T. Frey et al. PRL'12

Traditional cQED

J.-M. Raimond, M. Brune, and S. Haroche, RMP **73**, 565 (2001)

A. Wallraff et, Nature 431, 162 (2004)

Hybrid circuit quantum electrodynamics

Use of light-matter interaction to probe and manipulate nano-circuits

Versatility of nano-circuits

Quantum information but also condensed matter problems addressed

Light-matter interaction with quantum circuits

Subradiant split Cooper pairs

Probe of entanglement with electronic states

A. Cottet, T. Kontos & A. LevyYeyati, PRL'12

Photon mediated interaction between distant quantum dot circuits

Scalability of spin quantum bits

M.R. Delbecq et al. submitted

Quantum dot geometries

Two-dimensional electronic gas QD

Carbon Nanotube QD

- Confinement discretizes the spectrum inside the dot
- Possibility to study two-levels system or more complex artificial atoms

We use SWNTs as quantum dots

V_{sd} ∱ **2**n 2n+2 2n+3 2n+1 Vg

Coulomb diamonds and Kondo ridge

Coulomb diamonds and Kondo ridge V_{sd} ∱ 2n+2 2n 2n+1 2n+3 Kondo physics

Vg

Coulomb diamonds and Kondo ridge

Transport spectroscopy of semiconducting SWNTs

Transition from Fabry-Perot to Coulomb blockade as transmission is lowered

• Kondo regime (horizontal lines in the middle of Coulomb diamonds) in between

• More exotic possibilities in SWNTs (SU(4), pure orbital, two particle Kondo) Jarillo-Herrero et al. Nature '05, Makarovski PRL '07, T. Delattre et al. Nature Phys. '09

Embedding SWNTs in microwave cavities

10 μm gaps or 1+1 50μm fingers ("mirrors" of the cavity)
SF6 RIE etching of Nb (superconductor for high finesse cavity)

Embedding SWNTs in microwave cavities

- 10 μm gaps or 1+1 50μm fingers ("mirrors" of the cavity)
- SF6 RIE etching of Nb (superconductor for high finesse cavity)
- Growth of CNT by CVD after the etching
- Contacted CNTs with Pd electrodes inside the cavity (openings in ground)
- Use of reversed process (optical lithography for Al resonator at the end) to enhance yield

Embedding SWNTs in microwave cavities

Phase = Arctan(I/Q)Modulus = $\sqrt{I^2 + Q^2}$

CVD growth (methane process)

CVD growth (methane process)

Localization with SEM

CVD growth (methane process)

Ntres47az1gzoom.ssc - 2011/11/28 16:36 - U=-6.91 V=-128.10µm - WF=10µ

CVD growth (methane process)

Alignments crosses

Catalyst spot rest7az1large.ssc - 2011/11/2816:34 - U=16.86 V=118.05µm - WF=100µm Localization with SEM

A Kondo impurity in a microwave cavity

 Enhancement of coupling between photon and « impurity » due to field confinement

- Should affect both amplitude and phase of the signal
- More complex situation than in standard cavity QED setup a priori

Kondo = Many-body system

Photons coupled to open quantum system

Coupling of the cavity with the quantum dot

On-chip « photonic » Anderson-Holstein model [1]

$$H = H_{dot} + H_{cav} + \sum_{K,K'} (\lambda_K \hat{N}_K + \lambda_{K'} \hat{N}_{K'})(\hat{a} + \hat{a}^+)$$

- We probe the charge susceptibility with the classical EM field
- A priori also sensitive to orbital susceptibility

Transport and phase spectroscopy

• Kondo resonance appears as horizontal lines in the Coulomb diamonds

• Similar spectroscopic features in the phase of the microwave signal

Measurement of electron-photon coupling 100 MHz → OK for circuit QED experiments M.R. Delbecg et al. PRL '11

Two SWNTs quantum dots in a microwave cavity

Both quantum dots share the same anti-node of the electric field

Distant from about 80 μm (direct coupling not possible)

Each quadratures (I,Q) of the transmitted field and the two conductances G_1 and G_2 of the dots are measured simultanueously

Two SWNTs quantum dots in a microwave cavity

Both quantum dots share the same anti-node of the electric field

Distant from about 80 μm (direct coupling not possible)

Each quadratures (I,Q) of the transmitted field and the two conductances G_1 and G_2 of the dots are measured simultanueously

Quantum dot 1 in the Fabry-Perot limit (more open)

Quantum dot 2 in the Coulomb blockade (more closed)

Do they both « talk » to the cavity photons and do they talk with each other ?

Lpa

Driving dot 2 with the cavity field

• Coupling to the leads of electronic levels ~ 1 meV >> ω_0 cavity frequency

Electronic system relaxes much faster than times scale of photons

Driving dot 2 with the cavity field

• Coupling to the leads of electronic levels ~ 1 meV >> ω_0 cavity frequency

Electronic system relaxes much faster than times scale of photons

Driving dot 2 with the cavity field

• Coupling to the leads of electronic levels ~ 1 meV >> ω_0 cavity frequency

Electronic system relaxes much faster than times scale of photons

Lpa

Driving dot 2 with the cavity field

$$G_{on} = \frac{1}{2\pi} \int_0^{2\pi} G_{off} (V_G + \lambda V_{AC} \cos(2\pi f_0 t), V_{sd}) dt$$

$$G_{on} = \frac{1}{2\pi} \int_0^{2\pi} G_{off} (V_G + \lambda V_{AC} \cos(2\pi f_0 t), V_{sd}) dt$$

Dynamical splitting of states of dot 2 by the photons in the cavity

Dynamic splitting of states

- « Funnel » shaped splitting as a function of power
- Splitting scales with square root of number of photons

Confirmation of the level coupling and allows a direct measurement of it g₁,g₂ ≈ 100 MHz

Joint read-out of the two quantum dots

- The energy levels of dot 1 and dot 2 are read-out via the phase of microwave signal
- Vertical (dot 1) lines slightly tilted
- Dot 2 levels are controlled both by gate 2 and distant gate 1

The slope of dot 2 levels versus gate 1 shows the interaction between dot 1 and dot 2

Distant interaction between dot 1 and dot 2

- Closed dot used as detector of energy states of the whole system
- Closed dot (2) « feels » the distant gate acting on dot 1
- Crossing and anticrossings show that states of dot1 and dot2 are coupled

 Non-local coupling of the two dots mediated by the cavity photons (real and virtual photons involved)

A. Cottet et al. PRL'12, Palyi and Burkard PRL'11

V_{g2} (V)

0.6

0.8

11

Closed dot (2) « feels » the distant gate acting on dot 1

 $V_{g1}(V)$

-13

-14

-15

10.5

V_{g2} (V)

Crossing and anticrossings show that states of dot1 and dot2 are coupled

Non-local coupling of the two dots mediated by the cavity photons (real and virtual photons involved)

A. Cottet et al. PRL'12, Palyi and Burkard PRL'11

1.2

 $V_{g1}(V)$

1.4

