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Main result

Mott hybridization argument

+ log-normal distribution of wave-function tails

= good quantitative method for describing localization

(by comparison with exact 1D and quasi-1D results)



Anderson localization

1. Free particle

2. Classical diffusion:
L2 ∝ t

3. Quantum interference:
|A1 +A2|2 = |A1|2 + |A2|2 + 2ReA∗1A2

4. Localization corrections:

In 1 and 2 dimensions, interference suppresses the diffusion
completely at arbitrary strength of disorder: the particle stays in a
finite region of space (localization) [Mott, Twose ’61; Berezinsky
’73; Abrahams, Anderson, Licciardello, Ramakrishnan ’79]



Solvable models in 1D

Particle on a line (strictly 1D):

[Berezinsky technique
+ variations: equations
on the probability distribution
of the scattering phase]

Thick wire (quasi 1D):

[Efetov’s supersymmetric
nonlinear sigma model]

Two approaches to describing localization:

• transport properties (transmission coefficients)

• wave-function properties



Quantitative description of localized wave functions

Localization is not visible in the average of a single Green’s
function:

〈G(r)〉 decays at the length scale of the
mean free path

Averaging two Green’s functions (two types of averages):

1. 〈G(1, 1)G(2, 2)〉
(correlations of DOS)

2. 〈G(1, 2)G(2, 1)〉
(response function)



Correlation functions

R(ω, x) = ν−2
〈∑
n,m

|Ψn(0)|2 |Ψm(x)|2 δ(En−Em−ω) δ(E−En)
〉

S(ω, x) = ν−2
〈∑
n,m

Ψ∗n(0)Ψn(x)Ψ∗m(x)Ψm(0)

× δ(En − Em − ω) δ(E − En)
〉

Averaging is over disorder realizations



1D models

• Strictly 1D (S1D)

• Quasi-1D unitary (Q1D-U)

• Quasi-1D orthogonal (Q1D-O)

Assumptions:

– Gaussian white-noise disorder

– kl� 1 (l – mean free path)

Then the localization length is

ξ ∼ l in S1D

ξ ∼ Nl in Q1D (N � 1 – number of channels)

Energy scale: ∆ξ — level spacing AND Thouless energy at x ∼ ξ.



Correlations in the localized regime (ω � ∆ξ)

qualitatively ex-
plained by Mott
hybridization
argument

LM ∼ log(∆ξ/ω)
– Mott length scale

[Gor’kov, Dorokhov, Prigara ’83: S1D]
[DI, Ostrovsky, Skvortsov ’09: R(ω, x) in Q1D-U]



Mott argument (wave function hybridization)

At ω � ∆ξ, main contribution to correlations comes from pairs of
hybridized states:

1. At short distances (x . ξ), the two eigenfunctions have the
same profile (single localized wave function)

2. Hybridization is important as long as the splitting

∆ξ exp(−L/2ξ) > ω ⇔ L < LM = 2ξ ln(∆ξ/ω)



Mott argument: quantitative approach

1. Averaging over all possible positions of the two hybridizing
states and over the relative energy difference ε.

2. Diagonalize

(
ε/2 J∗

J −ε/2

)
⇒ ω =

√
ε2 + 4|J |2

3. Simplest guess (to be corrected): J = ∆ξe
−x/2ξ

[Sivan, Imry ’87]

– Explains qualitatively, but not quantitatively, e.g. fails to explain

• width
√
LMξ of the feature at x ∼ LM

• |Ψn(0)|2|Ψn(x)|2 ∝ e−x/4ξ instead of e−x/ξ

Can be repaired, if the log-normal distribution of tails
is taken into account



Log-normal tails (phenomenological rules 1)

1. Wave-function decomposition [Kolokolov ’95, Mirlin ’00]:
Ψ(x) = Ψ̃(x) · ϕ(x) (envelope · short-range oscillations)

2. Envelope χ(x) = ln |Ψ̃(x)|2 obeys diffusion + drift equation
(at large distances from maximum r = |x|/ξ � 1):

∂P

∂r
=
∂2P

∂χ2
+
∂P

∂χ

P (χ = 0) = 0

⇒ P (χ, r →∞) = f
(χ
r

) 1

2
√
πr

exp

[
−(χ+ r)2

4r

]



Log-normal tails (phenomenological rules 2)

3. Ansatz for hybridization matrix element
(by analogy with the two-well problem):

|J | = Φ Ψ̃A(x) Ψ̃B(x)

Φ has its own distribution and distinguishes between
S1D and Q1D and between symmetry classes in Q1D
(by analogy with random matrices):

dP (Φ) = δ(Φ− Φ0) dΦ with Φ0 ∼ 1 (S1D)

dP (Φ) ∝ Φ dΦ , Φ→ 0 (Q1D-U)

dP (Φ) ∝ dΦ , Φ→ 0 (Q1D-O)

These rules reproduce remarkably well exact results in 1D
(including the first subleading correction)



Comparison with exact results and new conjectures

DOS correlation function R(ω, x) = ν−2〈ρE(0)ρE+ω(x)〉

Model R(ω=0, x�1) δR(ω, x�1) at Mott length

1D 3 ω2(LM − 3x)e2x 3

Q1D-U 3 x−3/2e−x/4 3 ω2(LM − 3x)2e2x 3 1
2

(
1 + erf x−LM

2
√
x

)
Q1D-O ωe−x/2

Dynamical response function S(ω, x) = ν−2〈GRE(0, x)GAE+ω(x, 0)〉

Model S(ω=0, x�1) δS(ω, x�1) at Mott length

1D 3 −ω2(LM − 3x)e2x 3

Q1D-U x−3/2e−x/4 −ω2(LM − 3x)2e2x −
exp

[
− (x−LM )2

4x

]
2
√
πxQ1D-O −ωe−x/2

(3 mark available exact results)



Summary and possible applications

• Hybridization of log-normally distributed tails:
an easy approximation to study localized states,
much simpler than exact methods

• New results (conjectures) for quantum wires
in the orthogonal symmetry class

Possible extensions:

• away from one-parameter scaling (strong disorder)

• to higher dimensions

• to wires with a finite number of channels (crossover from
N = 1 to N =∞)

• to contacts between Anderson insulators and superconductors


