Hybridization of wave functions in one-dimensional Anderson localization

D. Ivanov (ETH Zürich & University of Zürich)M. Skvortsov, Ya. Fominov (Landau Institute)P. Ostrovsky (MPI Stuttgart & Landau Institute)

arXiv:1111.0339 [PRB 85, 035109 (2012)]

Chernogolovka MESO-2012

Main result

Mott hybridization argument

- + log-normal distribution of wave-function tails
- = good quantitative method for describing localization
- (by comparison with exact 1D and quasi-1D results)

Anderson localization

In 1 and 2 dimensions, interference suppresses the diffusion completely at arbitrary strength of disorder: the particle stays in a finite region of space (localization) [Mott, Twose '61; Berezinsky '73; Abrahams, Anderson, Licciardello, Ramakrishnan '79]

Solvable models in 1D

Particle on a line (strictly 1D):

[Berezinsky technique + variations: equations on the probability distribution of the scattering phase] Thick wire (quasi 1D):

[Efetov's supersymmetric nonlinear sigma model]

Two approaches to describing localization:

- transport properties (transmission coefficients)
- wave-function properties

Quantitative description of localized wave functions

Localization is not visible in the average of a single Green's function:

 $\langle G(r)\rangle$ decays at the length scale of the mean free path

Averaging two Green's functions (two types of averages):

1. $\langle G(1,1)G(2,2)\rangle$ (correlations of DOS)

2. $\langle G(1,2)G(2,1)\rangle$ (response function)

Correlation functions

$$R(\omega, x) = \nu^{-2} \left\langle \sum_{n,m} |\Psi_n(0)|^2 |\Psi_m(x)|^2 \,\delta(E_n - E_m - \omega) \,\delta(E - E_n) \right\rangle$$

$$S(\omega, x) = \nu^{-2} \left\langle \sum_{n,m} \Psi_n^*(0) \Psi_n(x) \Psi_m^*(x) \Psi_m(0) \right. \\ \left. \times \delta(E_n - E_m - \omega) \, \delta(E - E_n) \right\rangle$$

Averaging is over disorder realizations

1D models

- Strictly 1D (S1D)
- Quasi-1D unitary (Q1D-U)
- Quasi-1D orthogonal (Q1D-O)

Assumptions:

- Gaussian white-noise disorder
- $kl \gg 1$ (l mean free path)

Then the localization length is

 $\xi \sim l$ in S1D $\xi \sim Nl$ in Q1D ($N \gg 1$ – number of channels)

Energy scale: Δ_{ξ} — level spacing AND Thouless energy at $x \sim \xi$.

Correlations in the localized regime ($\omega \ll \Delta_{\xi}$)

qualitatively explained by Mott hybridization argument

 $L_M \sim \log(\Delta_{\xi}/\omega)$
– Mott length scale

[Gor'kov, Dorokhov, Prigara '83: S1D] [DI, Ostrovsky, Skvortsov '09: $R(\omega, x)$ in Q1D-U]

Mott argument (wave function hybridization)

At $\omega \ll \Delta_{\xi},$ main contribution to correlations comes from pairs of hybridized states:

1. At short distances ($x \leq \xi$), the two eigenfunctions have the same profile (single localized wave function)

2. Hybridization is important as long as the splitting

$$\Delta_{\xi} \exp(-L/2\xi) > \omega \quad \Leftrightarrow \quad L < L_M = 2\xi \ln(\Delta_{\xi}/\omega)$$

Mott argument: quantitative approach

1. Averaging over all possible positions of the two hybridizing states and over the relative energy difference ε .

2. Diagonalize
$$\begin{pmatrix} \varepsilon/2 & J^* \\ J & -\varepsilon/2 \end{pmatrix} \Rightarrow \omega = \sqrt{\varepsilon^2 + 4|J|^2}$$

3. Simplest guess (to be corrected): $J = \Delta_{\xi} e^{-x/2\xi}$ [Sivan, Imry '87]

- Explains qualitatively, but not quantitatively, e.g. fails to explain

- width $\sqrt{L_M\xi}$ of the feature at $x \sim L_M$
- $|\Psi_n(0)|^2 |\Psi_n(x)|^2 \propto e^{-x/4\xi}$ instead of $e^{-x/\xi}$

Can be repaired, if the log-normal distribution of tails is taken into account

Log-normal tails (phenomenological rules 1)

1. Wave-function decomposition [Kolokolov '95, Mirlin '00]: $\Psi(x) = \tilde{\Psi}(x) \cdot \varphi(x)$ (envelope \cdot short-range oscillations)

2. Envelope $\chi(x) = \ln |\tilde{\Psi}(x)|^2$ obeys diffusion + drift equation (at large distances from maximum $r = |x|/\xi \gg 1$):

$$\Rightarrow \quad P(\chi, r \to \infty) = f\left(\frac{\chi}{r}\right) \, \frac{1}{2\sqrt{\pi r}} \exp\left[-\frac{(\chi+r)^2}{4r}\right]$$

Log-normal tails (phenomenological rules 2)

3. Ansatz for hybridization matrix element (by analogy with the two-well problem):

$$|J| = \Phi \,\tilde{\Psi}_A(x) \,\tilde{\Psi}_B(x)$$

 Φ has its own distribution and distinguishes between S1D and Q1D and between symmetry classes in Q1D (by analogy with random matrices):

$$dP(\Phi) = \delta(\Phi - \Phi_0) d\Phi \quad \text{with} \quad \Phi_0 \sim 1 \quad \text{(S1D)}$$
$$dP(\Phi) \propto \Phi \, d\Phi \,, \quad \Phi \to 0 \quad \text{(Q1D-U)}$$
$$dP(\Phi) \propto d\Phi \,, \quad \Phi \to 0 \quad \text{(Q1D-O)}$$

These rules reproduce remarkably well exact results in 1D (including the first subleading correction)

Comparison with exact results and new conjectures DOS correlation function $R(\omega, x) = \nu^{-2} \langle \rho_E(0) \rho_{E+\omega}(x) \rangle$

Model	$R(\omega=0,x\gg1)$	$\delta R(\omega, x \gg 1)$	at Mott length
1D	 Image: A start of the start of	$\omega^2 (L_M - 3x) e^{2x}$	✓
Q1D-U	$\checkmark x^{-3/2}e^{-x/4}$	$\checkmark \omega^2 (L_M - 3x)^2 e^{2x}$	$\checkmark \frac{1}{2} \left(1 + \operatorname{erf} \frac{x - L_M}{2\sqrt{x}} \right)$
Q1D-0		$\omega e^{-x/2}$	

Dynamical response function $S(\omega,x)=\nu^{-2}\langle G^R_E(0,x)G^A_{E+\omega}(x,0)\rangle$

Model	$S(\omega=0,x\gg1)$	$\delta S(\omega, x \gg 1)$	at Mott length
1D	\checkmark	$-\omega^2(L_M-3x)e^{2x}$	$\left[(x-L_M)^2 \right]$
Q1D-U	$x^{-3/2}e^{-x/4}$	$-\omega^2 (L_M - 3x)^2 e^{2x}$	$-\frac{\exp\left[-\frac{1}{4x}\right]}{4x}$
Q1D-0		$-\omega e^{-x/2}$	$2\sqrt{\pi x}$

(✓ mark available exact results)

Summary and possible applications

- Hybridization of log-normally distributed tails: an easy approximation to study localized states, much simpler than exact methods
- New results (conjectures) for quantum wires in the orthogonal symmetry class

Possible extensions:

- away from one-parameter scaling (strong disorder)
- to higher dimensions
- to wires with a finite number of channels (crossover from N=1 to $N=\infty$)
- to contacts between Anderson insulators and superconductors