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Main result
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Mott hybridization argument

+ log-normal distribution of wave-function tails

= good quantitative method for describing localization
(by comparison with exact 1D and quasi-1D results)



Anderson localization

1. Free particle 3. Quantum interference:
|A1 —|—A2|2 = |A1|2 =+ |A2|2 + 2Re ATAQ

2. Classical diffusion: 4. Localization corrections:
L2 xt

In 1 and 2 dimensions, interference suppresses the diffusion
completely at arbitrary strength of disorder: the particle stays in a
finite region of space (localization) [Mott, Twose '61; Berezinsky
'73; Abrahams, Anderson, Licciardello, Ramakrishnan '79]



Solvable models in 1D

Particle on a line (strictly 1D): Thick wire (quasi 1D):

[Berezinsky technique
-+ variations: equations [Efetov's supersymmetric

on the probability distribution nonlinear sigma model]
of the scattering phase]

Two approaches to describing localization:
e transport properties (transmission coefficients)

e wave-function properties



Quantitative description of localized wave functions

Localization is not visible in the average of a single Green's
function:

(G(r)) decays at the length scale of the
mean free path

Averaging two Green's functions (two types of averages):

1. (G(1,1)G(2,2))
(correlations of DOS)

2. (G(1,2)G(2,1))

(response function)



Correlation functions
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Averaging is over disorder realizations



1D models

e Strictly 1D (S1D)
e Quasi-1D unitary (Q1D-U)
¢ Quasi-1D orthogonal (Q1D-0)

Assumptions:
— Gaussian white-noise disorder
— kIl > 1 (I — mean free path)

Then the localization length is
&~1inS1D
£~ Nlin Q1D (N > 1 — number of channels)

Energy scale: A¢ — level spacing AND Thouless energy at x ~ &.



Correlations in the localized regime (w < A¢)
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qualitatively — ex-
plained by Mott

< (%) Ln = hybridization
' level \'atu\sien argument
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e L Las ~ log(A¢ Jw)

i : R w ”x — Mott length scale

[Gor'kov, Dorokhov, Prigara '83: S1D]
[DI, Ostrovsky, Skvortsov '09: R(w,x) in Q1D-U]



Mott argument (wave function hybridization)

At w < Ag, main contribution to correlations comes from pairs of

hybridized states:
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1. At short distances (z < &), the two eigenfunctions have the
same profile (single localized wave function)

2. Hybridization is important as long as the splitting
Agexp(=L/28) >w & L <Ly =2{In(A¢/w)



Mott argument: quantitative approach

1. Averaging over all possible positions of the two hybridizing
states and over the relative energy difference ¢.

2. Diagonalize <6§2 _i/2> = w=/e2+4|J]?

3. Simplest guess (to be corrected): J = Age™/%
[Sivan, Imry '87]

— Explains qualitatively, but not quantitatively, e.g. fails to explain
o width /L& of the feature at x ~ Ly

o |U,(0)2|W,(z)|> x e=*/% instead of e~*/¢

Can be repaired, if the log-normal distribution of tails
is taken into account



Log-normal tails (phenomenological rules 1)

1. Wave-function decomposition [Kolokolov '95, Mirlin '00]:
U(z) = U(x) - ¢(x) (envelope - short-range oscillations)

2. Envelope x(z) = In |¥(x)|? obeys diffusion + drift equation
(at large distances from maximum r = |z|/£ > 1):

o _ P op
or  0x?  Ox

P(x=0)=0

) zjﬁ P [(Xirr)?]



Log-normal tails (phenomenological rules 2)

3. Ansatz for hybridization matrix element
(by analogy with the two-well problem):

|J| = (I)(IJA(I‘) \i’B(fL‘)

® has its own distribution and distinguishes between
S1D and Q1D and between symmetry classes in Q1D
(by analogy with random matrices):

dP(®) = §(® — ®o)d® with Py~ 1 (SID)

dP(®) x ®dd, ®—0 (QID-U)
dP(®) x d®, & —0 (Q1D-O)

These rules reproduce remarkably well exact results in 1D
(including the first subleading correction)



Comparison with exact results and new conjectures

DOS correlation function R(w,z) = v~2{pp(0)pg+w(z))

Model | R(w=0,x>>1) IR(w, x>1) at Mott length
1D Vv w?(Lyr — 3z)e*® vV

QID-U v a73/2e7%/4 |/ W (Ly — 32)%* v/ 1 (1 + erfx;\%”)

Q1D-0O we */?

Dynamical response function S(w,z) = v=2(GE(0,2)G4. (2, 0))

Model | S(w=0,z>>1) 0S(w, x>1) at Mott length
1D Vv —w?(Ly — 3z)e* |/ o {_ (Z_LM)Q}

QID-U | 2 32e=2/4 | —2(Ly — 32)%e%® | P 4o

Q1D-0O —we™%/? 2V

(v mark available exact results)




Summary and possible applications

Hybridization of log-normally distributed tails:
an easy approximation to study localized states,
much simpler than exact methods

New results (conjectures) for quantum wires
in the orthogonal symmetry class

Possible extensions:

away from one-parameter scaling (strong disorder)
to higher dimensions

to wires with a finite number of channels (crossover from
N=1to N =0)
to contacts between Anderson insulators and superconductors



